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A mapping-closure model is used to derive the probability distribution function (PDF) for the gradient
of a passive scalar diffusing in a random velocity field. This PDF is non-Gaussian and shows exponential

tails observed in laboratory experiments.
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I. INTRODUCTION

A passive scalar diffusing in a turbulent fluid is ran-
domized through advection by the fluid and acquires sta-
tistical properties which are directly related to those of
the random velocity field. The random convection leads
to a statistical increase in the gradients of the scalar field
to be halted ultimately by the smoothing action of
diffusion. Obukhov [1] and Corrsin [2] invoked argu-
ments similar to those used in Kolmogorov’s [3] theory
for the turbulent velocity field to surmise that the small-
scale structure of the scalar field has a measure of univer-
sality and possesses statistical properties which are local-
ly homogeneous and isotropic and depend only weakly on
the large-scale features of the scalar field, provided the
Reynolds number and the Peclet number of the tur-
bulence are sufficiently high. A self-similar cascade of
scalar variance to smaller scales was then postulated
whereby the spectrum function I'(k) was given by

T(k)~yxe 13k =373, (1

where Y is the average rate per unit volume of the fluid at
which the scalar variance is transferred in the spectral
space and € is the average rate of viscous dissipation of
kinetic energy per unit mass of the fluid.

The Obukhov-Corrsin theory assumes that the scalar-
variance cascade is local in the spectral space and in-
volves a continuous loss of information. The normalized
statistics of band-limited scalar fields in the inertial-
convective range would then be identical and depend
only on the mean dissipation rates ¥ and €. However,
direct numerical simulations [4] have shown that the
most intense regions of the scalar gradient occur as large
flat sheets. This implies that the mean dissipation rates y
and € would exhibit spatial fluctuations, thereby indicat-
ing the buildup of intermittency in the inertial-convective
range of the scalar-variance cascade [5—12]. The statis-
tics of successively band-limited scalar fields may then be
expected to become ever more non-Gaussian. Laboratory
experiments [6,10,11] have shown that the statistics of
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the gradient of the scalar diffusing in a random velocity
field are far from Gaussian and exhibit long and exponen-
tial tails.

In this paper, we propose to use the mapping-closure
principle of Kraichnan [13] to derive the probability dis-
tribution function (PDF) for the gradient of a passive sca-
lar diffusing in a random velocity field via the nonlinear
mapping of a Gaussian reference field X;(x) at each ¢.
The model equation for the mapping function is obtained
by making plausible physical assumptions about the
mechanism underlying the scalar diffusion process in a
turbulent fluid. (Kraichnan [13] showed that this pro-
cedure provides valid closures for single-point probability
distributions of velocity gradients, thereby giving insight
into the buildup of intermittency of velocity in fully
developed turbulence.)

II. MAPPING-CLOSURE MODEL

The mapping-closure scheme in the following is based
on the distortion of a Gaussian reference field into a
dynamically evolving non-Gaussian field for the scalar
gradient. The evolution is obtained from the equation
describing the diffusion of the scalar 7 in a random veloc-
ity field v and is based on the competition between the
diffusive relaxation and the random convection processes:

T | v NT=kV’T )
ot
where « is the resistivity.

In order to motivate the rationale for modeling the
diffusion of passive scalar in the Navier-Stokes tur-
bulence, let us first consider the diffusion of a passive sca-
lar in Burgers turbulence [13].

A. One-dimensional scalar turbulence

This problem is governed by
Ou ou d%u

or _,°0% 3

a  Yox Vax?’ @
d d T

—_ —_— = 4

a1 +uax T K8X2 R (4)

where v is the viscosity.
The velocity gradient du /3x and the scalar gradient
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o7 /dx, then, obey
3 3 |du_ |ou Qu
o Yax |ax . |ox | TVaxd >
8. 8 |ar__auar, or ©
ot dx | ox dx Ox ax3

The first term on the right-hand side of Eq. (5) de-
scribes the self-straining of du /d0x. This leads to an
enhancement (relaxation) of negative (positive) du /9x
and therefore the formation of sawtooth waves with
shock fronts whose steepness is limited by the dissipative
term on the right-hand side of Eq. (5) [13].

The first term on the right-hand side of Eq. (6) de-
scribes the convective stretching of 37 /dx. It leads to a
relaxation (enhancement) of a positive (negative) 87 /0x
when it is in the same direction as du /dx and an
enhancement (relaxation) of a positive (negative) 87 /9x
when it is in the direction opposite to that of du /dx.
This enhancement is limited by the dissipative term on
the right-hand side of Eq. (6).

In the simplest mapping closure for one-dimensional
scalar turbulence, du /dx and A7 /dx may be taken to
evolve according to

ou _ du®
O —J(t)——-dg , (7
T _ dr°
O =I(t) i (8)

where J(t) and I(z) are the effective intensification ratios

of velocity gradient and temperature gradient, respective-

ly, of local flow structures. In Egs. (7) and (8), the depen-

dences of the mapping functions J and I on x and & are

not explicitly shown. #%&) and T&) are multivariate

Gaussian, statistically homogeneous reference fields.
Using (7) and (8), we obtain from Egs. (5) and (6)

aJ du®

” =—d—§ﬂ+vk313, 9)
0
%f—= — —”Z‘—gﬂﬂkﬁﬂ , (10)

where k; and ic\d are the characteristic dissipation wave
numbers for the fluctuations duo/d§‘ and dTO/d_é,‘, re-
spectively,

(1% |)
(1% )

The first terms on the right-hand side of Egs. (9) and (10)
come from the self-stretching term —(du /0x)? and the
convective-stretching term —(9du /9x)(d7 /8x) in Egs. (5)
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and (6). The second terms on the right-hand side of Egs.
(9) and (10) describe the viscous decay of du /3x with the
decay constant proportional to the square of the stretch-
ing ratio J2 and the diffusive decay of 3T /dx with the de-
cay constant proportional to the square of the stretching
ratio I2, respectively.

B. Navier-Stokes scalar turbulence

Let s be a transverse component of dv; /9x; and X be a
component of 3T /dx; and have Gaussian distributed ini-
tial values s, and X, respectively. The initial states s,
and X, are then assumed to evolve via local distortion
through the action of nonstochastic effective stretching

functions J (sg,¢) and I (X,,t), according to
s=J(sg,t)s9 , X=I(Xy, )X, . (11)

The stretching functions J(sq,t) and I(Xy,t) are then
postulated to evolve, in turn, according to

%=|s0|Jz—vk3J3 , (12)
%=|s0|JI—K73313 , (13)

where v is the viscosity. Here, Eq. (12) is due to Kraich-
nan [13]. The first terms on the right-hand sides in Eqgs.
(12) and (13) describe the growths due to inertial and con-
vective stretching while the second terms describe the
viscous and diffusive decays. The absolute values in Egs.
(12) and (13) reflect the symmetry between positive and
negative values of the transverse velocity gradient. k;
and I?d are the characteristic dissipation wave numbers
for the fluctuations s, and X, respectively.
We then have in the stationary state,

_ I30| _ |50|J

J=——, I? (14)
vk} KE‘%
Using (14), we then have form (11)
Isol? Iso1 X!
Is|=—=, | = ol Xol (15)
vkg \/wck,}ic\f

If we assume that the PDF’s of s, and (sq,X,) are
given by

2 2
P(s(,)=——————1 e ‘0% (16)
\/2170%
1
P(S ,X )=——
oo 21r0102\/1—p2
2 2
1 50 2psoXo | Xp
XX\ TS |oF s a2 ||’
P g1 192 o3
(17)
where
(50X
o1=(s}), o3=(X}), p= Uolaz
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The PDF’s of s and X are then given by

Os
P(s)=P(so)—&o— , (18)
_ 3lsoXo
P(X)‘P(So:XO)T . (19)
Thus,
vka 1'% sl 202 w2
P(s)= 2d Isl /207 /vk] ’ 20)
moils|
\/wckﬁc\‘?
PX)=——
700,V 1—p
plX|
Xexp =
0,0,(1—p*)/V vk 2k}
XK, x| 1)

o10,(1—p2) /V vk ks |

where K (x) is the modified Bessel function of the second
kind. Here, (20) is due to Kraichnan [13]. The deriva-
tion of (21) follows the usual procedure to calculate the
PDF’s of functions of random variables [14] and is briefly
sketched in the Appendix.

Noting that

o Data of Antonia et al. [6]
O Data of Tong and Warhaft [11]
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FIG. 1. Comparison of the calculated PDF (21) with the ex-
perimental data (the parameters p and 0,0,/
been taken to be 0.6 and 0.59, respectively).

vik2k; have

P(X)
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, as [X= o],

(22)

we see that P (X), like P (s), shows exponential tails.

The scalar gradient PDF (21) is compared in Fig. 1
with the experimental data of Antonia et al. [6] and
Tong and Warhaft [11], and the agreement is seen to be
very good.

III. DISCUSSION

The sharp maxima exhibited by the scalar-gradient
PDF (21) suggests the occurrence of (a) small regions
where the scalar gradient X becomes very large, and (b) a
strong mixing in large regions of the flow. These results
are supported by the direct numerical simulations of
Pumir [15], which showed that the structure of the scalar
field in physical space exhibits relatively well-mixed
domains separated by very narrow sheetlike regions
where the scalar gradients are very large.

It may be noted that exponential tails on the PDF can
be obtained via a mapping function satisfying averaged
equations, as in the above development, or, alternatively,
by considering the effects of stochastic strain on the map-
ping function [16]. It is remarkable, however, that these
simple mapping models are able to generate, from Gauss-
ian fields via self-straining and convective-stretching act-
ing over the order of a singly eddy-turnover time of
dissipation-range scales, intermittencies that -closely
resemble those of real turbulence at large Reynolds and
Peclet numbers.

Incidentally, PDF’s involving modified Bessel func-
tions, like that in (21), have been given previously for the
kinetic energy dissipation € [17]; here, the velocity gra-
dient was taken to be conditionally Gaussian distributed
with the variance I" distributed.
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APPENDIX

Let x and y be two random variables, and let z=xy.
The probability distribution function F,(z) is determined
by the probability of the event {xy <z}, and is given by

F (2= [, [foxpdxdy, (A1)

where f,(x,y) is the joint probability density function of
the random variables x and y, and the region D, is given
by
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{D,:(x,y)|xy <z}

or
Dz:(x,y)|x§f,y%0

Thus,
_ =) z/y
F ()= [ " [77f(xy)dx dy
0 ©
+[7 f,/y Fry(x,p)dx dy | (A2)

from which the probability density function f,(z) is given
by

o 1 o 1
@)= [ —fy [ Zy|d— [ —fy |y |dy
oy y — ) y

or

dy . (A3)

w 1
fz(2)=2f0 ;fxy

i)’
y’

Let x and y be jointly normal with the joint probability
density function given by

1
f (x,y)z————“—‘-‘___‘—._
i 277'0102\/1—/)2
2 2
XCXP__I_z %__Zw+y_2 ,
2(1—p*) |01 0102 05

(A4)
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where
2—(2 2— (42 = (xy)
al=(x?), o3=(*), p 0%
Using (A4), (A3) becomes
- ay+ b(;)
fz(z):a o ‘;e Y dy , (AS)
where
a:__‘_Z__ep/[alaz(l—pZ)]
2#0102\/1—p2 ’
1 z?

i

a ’

—_— Z)=E——— .
203(1—p?) 203(1—p?)

On evaluating the integral, (AS5) leads to

f(z2)=aK,(2Vab(z)), (A6)

where K (x) is the modified Bessel function of the second
kind.
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